SET\textsubscript{1} - ELEMENTS

Danilishyn Illia Vitaliovich
Student
Sumy State University, Ukraine

Danilishyn Oleksandr Vitaliovich
Student
Sumy State University, Ukraine

Scientific director: Pasynkov V.M.
PhD of physic-mathematical science
Sumy State University, Ukraine

Summary: The article discovers Set\textsubscript{1} - elements, Set\textsubscript{1} - capacity in itself and connection of Set\textsubscript{1} - elements with Set\textsubscript{1} - capacity in itself. Dynamical Set\textsubscript{1} - capacity in itself and Set\textsubscript{1} - elements for continual sets are also been analyzed.

Keywords: Set\textsubscript{1} - capacity, continual sets, Set\textsubscript{1} - elements

Definition 1. The containment of A into B and the displacement of D from C simultaneously with operations \((\ast_1), (\ast_2)\), we shall call Set\textsubscript{1} - element. Let’s denote \(\mathcal{S}_{D_1} t^A_B\).

A, B, C, D are any, in particular A may be action, action in the right direction and with the right goal (action with the so-called target weights [1]).

Definition 2. \(\mathcal{S}_{D_1} t^A_B\) is called an ordered Set\textsubscript{1} - element, if some or any elements from A, B, C, D may be by ordered elements.

It is allowed to add Set\textsubscript{1} - elements: \(\mathcal{S}_{D_1} \mathcal{S}_{D_2} t^A_{B_1} + \mathcal{S}_{D_1} \mathcal{S}_{D_2} t^A_{B_2} = \mathcal{S}_{D_1 \cup D_2} \mathcal{S}_{D_1} t^A_{B_1 \cup B_2} (\ast_1)\), where some or any elements may be by ordered elements.

It is allowed to multiply Set\textsubscript{1} - elements: \(\mathcal{S}_{D_1} \mathcal{S}_{D_2} t^A_{B_1} \ast \mathcal{S}_{D_1} \mathcal{S}_{D_2} t^A_{B_2} = \mathcal{S}_{D_1 \cap D_2} \mathcal{S}_{D_1} t^A_{B_1 \cap B_2} (\ast_2)\), where some or any elements may be by ordered elements.

Set\textsubscript{1} - elements can be elements of a group both by multiplication \((\ast_2)\) and by addition \((\ast_1)\), and also form algebraic ring, field by these operations.

Set\textsubscript{1} - capacity in itself

Definition 3. The Set\textsubscript{1} - capacity in itself and from itself A of the null type is the holding capacity containing itself as an element and expelling oneself A out of oneself A simultaneously: \(\mathcal{A}_{\mathcal{S}_{D_1} t^A_A}\). Denote \(\mathcal{S}_{D_1}^A f^A\).

Definition 4. The Set\textsubscript{1} - capacity in itself A and from itself B of the first type is the holding capacity containing itself as an element and expelling oneself B out of oneself B simultaneously: \(\mathcal{B}_{\mathcal{D}_{D_1} t^A_B}\). Denote \(\mathcal{S}_{D_1}^{A f^A}\).

Definition 5. The Set\textsubscript{1} - capacity of the second type is the holding capacity containing B into A and expelling oneself B out of oneself B simultaneously: \(\mathcal{B}_{\mathcal{S}_{D_1} t^A_B}\). Denote \(\mathcal{S}_{D_1}^{2f^A}\).
Definition 6. The Set\(_1\)-capacity of the third type is the holding capacity containing itself as an element B and the displacement of B from A simultaneously: \(\Delta S_1 f_{B_1}^A\). Denote \(S_1^{ef} f_{A}\).

Definition 7. Set\(_1\)-capacity in itself A of the fourth type is the holding capacity that contains the program that allows it to be generated and it to be degenerated simultaneously. Let’s denote \(S_0^{ef} f_{A}\).

Definition 8. Set\(_1\)-capacity in itself of the fifth type A contains itself in part and expelling oneself in part or contains a program that allows it to be generated in part and it to be degenerated in part, or both simultaneously. Let us denote \(S_5^{ef} f_{A}\).

Connection of Set\(_1\)-elements with Set\(_1\)-capacity in itself
Consider a fifth type of self-holding capacity. For example, based on \(S_5^{ef} f_{A}\), where \(A = (a_1, a_2, \ldots, a_n)\) it is possible to consider Set\(_1\)-capacity in itself \(S_5^{ef} f_{A}\) with m elements and from A, at m<n, which is formed by the form (1) [1]: that is, only m elements are located in the structure \(S_5^{ef} f_{A}\). Set\(_1\)-capacity in itself of the fifth type can be formed for any other structure, not necessarily Set\(_1\), only through the obligatory reduction in the number of elements in the structure. In particular, using the form (2) [1]. Structures more complex than \(S_5^{ef} f_{A}\) can be introduced.

Mathematics Set\(_1\)-itself
1. Similarly, for the simultaneous execution of various operators: \(F_0 C_{S_1} f_{F_2 A}\), where \(F_0, F_1, F_2, F_3\) are operators.
2. Similarly, for the simultaneous execution of various operators: \(S_j^{ef} F_{A}\), j=0,1,2,3,4,5, where \(\{F\} = (F_0, F_1, F_2, F_3)\) are operators.
3. Operations are taking place:
\[
\begin{align*}
S_1 t_{B_1}^A + C_2 S_1 t_{B_2}^A &= A_1 t_{B_1}^A + A_2 t_{B_2}^A (\star), \\
S_1 t_{B_1}^A + D_2 S_1 t_{B_2}^A &= D_1 t_{B_1}^A + D_2 t_{B_2}^A (\star), \\
S_1 t_{B_1}^A + C_2 S_1 t_{B_2}^A &= D_1 t_{B_1}^A + C_2 S_1 t_{B_2}^A (\star), \\
S_1 t_{B_1}^A + D_2 S_1 t_{B_2}^A &= C_2 S_1 t_{B_1}^A + D_2 S_1 t_{B_2}^A (\star).
\end{align*}
\]
4. \(R_{S_1} t_{B_1}^A = \mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\).
5. \(R_{S_1} t_{B_1}^A = \mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\).
6. \(R_{S_1} t_{B_1}^A = \mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\).
7. \(R_{S_1} t_{B_1}^A = \mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\).
8. \(R_{S_1} t_{B_1}^A = \mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\).
9. \(R_{S_1} t_{B_1}^A = \mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\).
10. \(R_{S_1} t_{B_1}^A = \mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\).
11. \(R_{S_1} t_{B_1}^A = \mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\).
12. \(R_{S_1} t_{B_1}^A = \mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\).
13. \(R_{S_1} t_{B_1}^A = \mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\), \(\mu(R_{S_1} t_{B_1}^A)\) = \(\mu(S_{11}^{ef} f_{A})\).
14. \(\frac{\partial S_{01} t_B}{\partial S_{01} t_B} = \left(\frac{\partial S_{01} f_B}{\partial S_{01} t_B} \right), \mu_{01} (S_{01} t_B) = (\mu(A) + \mu(B) + \mu(R) - \mu(Q)) \)

15. \(\frac{\partial S_{01} t_B}{\partial S_{01} t_B} = \left(\frac{\partial S_{01} f_B}{\partial S_{01} t_B} \right), \mu_{01} (S_{01} t_B) = (\mu(A) + \mu(B) + \mu(R) - \mu(Q)) \)

16. \(\frac{\partial S_{01} t_B}{\partial S_{01} t_B} = \left(\frac{\partial S_{01} f_B}{\partial S_{01} t_B} \right), \mu_{01} (S_{01} t_B) = (\mu(A) + \mu(B) + \mu(R) - \mu(Q)) \)

17. \(\frac{\partial S_{01} t_B}{\partial S_{01} t_B} = \left(\frac{\partial S_{01} f_B}{\partial S_{01} t_B} \right), \mu_{01} (S_{01} t_B) = (\mu(A) + \mu(B) + \mu(R) - \mu(Q)) \)

The concepts of Set_1 – force: \(\frac{\partial S_{01} t_B}{\partial S_{01} t_B} \) - the containment of force \(F_1 \) into force \(F_2 \) and the displacement of force \(F_3 \) from force \(F_4 \) simultaneously. Set – energy: \(E_1 \) – the containment of energy \(E_1 \) into energy \(E_2 \) and the displacement of energy \(E_1 \) from energy \(E_3 \) simultaneously.

Consider the concepts of Set_1-capacity in itself of physical objects A, B. Similar to the concepts of publication: the Set_1-capacity in itself of the first type is the holding capacity containing itself A as an element and expelling oneself B out of oneself B simultaneously: \(\frac{\partial S_{01} t_A}{\partial S_{01} t_A} \). Set_2-capacity in itself of the third type contains itself in part and expelling oneself in part or contains a program that allows it to be generated and it to be degenerated simultaneously partially, or both: \(S_{01} s_A, S_{01} s_B \). By analogy, for \(S_{01} s_A, S_{01} s_B, S_{01} s_A, S_{01} s_B \).

Also you can consider these types of Set_1-capacity in itself for other objects. For example: \(S_{01} s_A \) operator A, \(S_{01} s_B \) action B, \(S_{01} s_C \) made Q \(i=0,1,2,3,4,5 \) and etc.

Remark 1. The concept of elements of physics Set_1 is introduced for energy space. The corresponding concept of elements of chemistry Set_1 is introduced accordingly.

Remark 2. Definition 9. The holding capacity A is called own for its elements, if for any element \(xA \) the relation \(Ax \subset \mu A \) for any \(\mu Z \). Z: set of real numbers. For example, the hierarchy of levels self is just such holding capacity with \(\mu = 1 \).

Definition 10. Self- hierarchy of levels self is \(S_{01} \) hierarchy of levels self.

Definition 11. Self- hierarchy of levels self at point \(x \) is \(S_{01} \) hierarchy of levels self.

Definition 12. TS- hierarchy of levels TS is TS(TS- hierarchy of levels TS) [1].

Remark 13. This model corresponds to the distribution of self-energy of a living organism, in particular a human one. The left part \(S_{01} s_A \) corresponds to the distribution of self-energy of the left half of a living organism, the right part \(S_{01} s_A \) corresponds to the distribution of self-energy of the right half of a living organism. For example, based on (1*), (2*):

\(S_{01} s_A \) culture medium for \(A_{01} s_A \)

It is clear that a chemical agent (tablets) \(S_{01} s_A \) cannot destroy the virus, since \(S_{01} s_A \) cannot actually enter incompatible objects in the addition operation, there is no interaction directly with the virus, but a simple overlay. The aggressiveness of the virus is modeled here by the target weight *. Here, virus cure is modeled by an antivirus model \(S_{01} \) with
a target weight *: \[S_t^{-\text{virus } C} + \]

Here, an antivirus \((-\text{virus } C\rangle\) can be an appropriate agent, a virus-antagonist to this virus and etc.

The main trend in science, in our opinion, is a hierarchical representation by external compression of object spaces, for example, compression of the object space in an ordinary point space into a Banach space in an external compression of object spaces, for example, compression of the object space into a Hilbert space in an ordinary point space into a Banach space, for example, compression of the object space into a Banach space. This is the process of a placement of \(D(t)\) from \(C(t)\) simultaneously:

\[C_1(t)S_t(t)A_1(t) + C_2(t)S_t(t)B_2(t) = C_1(t)A_1(t)S_t(t)B_1(t) + C_2(t)A_2(t)S_t(t)B_2(t) \quad (*_3) \]

where some or any elements may be ordered elements.

It is allowed to multiply dynamical Set\(_1\) - elements:

\[C_1(t)S_t(t)A_1(t)\bullet C_2(t)S_t(t)A_2(t) = C_1(t)A_1(t)S_t(t)A_2(t) \quad (*_4) \]

where some or any elements may be ordered elements.

Dynamical Set\(_1\) - elements can be elements of a group both by multiplication \((*_3)\) and by addition \((*_4)\), and also form algebraic ring, field by these operations.

Dynamical Set\(_1\) - capacity in itself

Definition 16. The dynamical Set\(_1\)-capacity in itself and from itself \(A(t)\) of the null type is the process of a containment itself as an element and expelling oneself \(A(t)\) out of oneself \(A(t)\) at time \(t\) simultaneously: \[A(t)S_t(t)A(t) \] Denote \[S_0^{\text{eff}}(t)A(t) \] .

Definition 17. The dynamical Set\(_1\)-capacity in itself \(A(t)\) and from itself \(B(t)\) of the first type is the process of a containment itself as an element and expelling oneself \(B(t)\) out of oneself \(B(t)\) at time \(t\) simultaneously: \[B(t)S_t(t)A(t) \] Denote \[S_{11}^{\text{eff}}(t)A(t) \] .

Definition 18. The dynamical Set\(_1\)-capacity of the second type is the process of putting \(B(t)\) into \(A(t)\) and expelling oneself \(B(t)\) out of oneself \(B(t)\) at time \(t\) simultaneously: \[B(t)S_t(t)A(t) \] Denote \[S_{21}^{\text{eff}}(t)A(t) \] .

Definition 19. Dynamical Set\(_1\)-capacity of the third type is the process of a containment itself as an element \(B(t)\) and the displacement of \(B(t)\) from \(A(t)\) at time \(t\) simultaneously: \[A(t)S_t(t)B(t) \] Denote \[S_{31}^{\text{eff}}(t)A(t) \] .

Definition 20. Dynamical Set\(_1\)-capacity in itself \(A(t)\) of the fourth type is the process of a containment of the program that allows it to be generated and it to be degenerated at time \(t\) simultaneously through the structure Set\(_1\). Let’s denote \[S_{41}^{\text{eff}}(t)A(t) \] .

Definition 21. Dynamical Set\(_1\)-capacity in itself of the fifth type \(A(t)\) is the process of a containment of itself in part and expelling oneself in part or process of a
containment of the program that allows it to be generated in part and it to be
degenerated in part at time t through the structure Set₁, or both simultaneously. Let
us denote $S^*_f(S, t)fA(t)$.

Consider dynamical Set₁-capacity in itself of the fifth type $A(t)$: $S^*_f(t)fA(t)$. For
$A(t) = (a_1(t), a_2(t), \ldots, a_n(t))$ it is possible to consider the dynamical Set-capacity in
itself of the fifth type $A(t)$: $S^*_f(t)fA(t)$ with m elements and from $\{a(t)\}$, at $m<n$, which
is process to be formed by the form (1), that is, only m elements from $A(t)$ are
located in the structure $c(D(t)S(t))_{A(t)}$. The same for $D(t) = (d_1(t), d_2(t), \ldots, d_n(t))$ in
it. Dynamical Set₁-capacity in itself of the fifth type can be formed for any other
structure, not necessarily Set₁, only through the obligatory reduction in the number of
elements in the structure. In particular, using the form (2). Structures more
complex than $S^*_f(t)fA(t)$ can be introduced.

Dynamical mathematics Set₁-itself

1. Similarly, for the simultaneous execution of various operators:

$$B(t)S_1(t)A(t) = \left(\frac{B(t)S_1(t)A(t)}{A(t)} \right),$$

where $B_0(t), B_1(t), B_2(t), B_3(t)$ are operators.

2. Similarly, for the simultaneous execution of various operators:

$$S^*_f(t)fA(t), \quad i=0,4,5,$n \quad S^*_f(t)fA(t), \quad k=1,2,3,$n \quad \{F(t)\} =
$$

$(F_0(t), F_1(t), F_2(t), F_3(t))$ are operators.

3. $B(t)S_1(t)A(t) = \left(\frac{B(t)S_1(t)A(t)}{A(t)} \right)$,

$$\mu_1(B(t)S_1(t)A(t)) = \left(\mu(\frac{B(t)S_1(t)A(t)}{A(t)}) \right),$$

$B(t) = (B_1(t), B_2(t), B_3(t), B_4(t)), B(t)$ are operators.

4. $B(t)S_1(t)A(t) = \left(\frac{B(t)S_1(t)A(t)}{A(t)} \right)$,

$$\mu_1(B(t)S_1(t)A(t)) = \left(\mu(\frac{B(t)S_1(t)A(t)}{A(t)}) \right),$$

$B(t) = (B_1(t), B_2(t), B_3(t), B_4(t)), B(t)$ are operators.

5. $B(t)S_1(t)A(t) = \left(\frac{B(t)S_1(t)A(t)}{A(t)} \right)$,

$$\mu_1(B(t)S_1(t)A(t)) = \left(\mu(\frac{B(t)S_1(t)A(t)}{A(t)}) \right),$$

$B(t) = (B_1(t), B_2(t), B_3(t), B_4(t)), B(t)$ are operators.

6. $B(t)S_1(t)A(t) = \left(\frac{B(t)S_1(t)A(t)}{A(t)} \right)$,

$$\mu_1(B(t)S_1(t)A(t)) = \left(\mu(\frac{B(t)S_1(t)A(t)}{A(t)}) \right),$$

$B(t) = (B_1(t), B_2(t), B_3(t), B_4(t)), B(t)$ are operators.

7. $B(t)S_1(t)A(t) = \left(\frac{B(t)S_1(t)A(t)}{A(t)} \right)$,

$$\mu_1(B(t)S_1(t)A(t)) = \left(\mu(\frac{B(t)S_1(t)A(t)}{A(t)}) \right),$$

$B(t) = (B_1(t), B_2(t), B_3(t), B_4(t)), B(t)$ are operators.

8. $B(t)S_1(t)A(t) = \left(\frac{B(t)S_1(t)A(t)}{A(t)} \right)$,

$$\mu_1(B(t)S_1(t)A(t)) = \left(\mu(\frac{B(t)S_1(t)A(t)}{A(t)}) \right),$$

$B(t) = (B_1(t), B_2(t), B_3(t), B_4(t)), B(t)$ are operators.

9. $B(t)S_1(t)A(t) = \left(\frac{B(t)S_1(t)A(t)}{A(t)} \right)$,

$$\mu_1(B(t)S_1(t)A(t)) = \left(\mu(\frac{B(t)S_1(t)A(t)}{A(t)}) \right),$$

$B(t) = (B_1(t), B_2(t), B_3(t), B_4(t)), B(t)$ are operators.
\[
\begin{align*}
12. & \quad \mu_{Q(t)S_1 t(t)A(t)}^{B(t)} = \mu(B(t)) + \mu(A(t)) - \mu(Q(t)) \\
13. & \quad B(t)S_1 t(t)A(t)_{Q(t)} = \left(S_{21}^t f(t)_{B(t)}^{A(t)} \right)_{Q(t)B(t)} \\
14. & \quad \mu_{Q(t)S_1 t(t)A(t)}^{B(t)} = \mu(B(t)) + \mu(A(t)) - \mu(Q(t)) \\
15. & \quad B(t)S_1 t(t)A(t)_{Q(t)} = \left(S_{21}^{B(t)} f(t)_{A(t)}^{A(t)} \right)_{Q(t)B(t)} \\
16. & \quad \mu_{Q(t)S_1 t(t)A(t)}^{B(t)} = \mu(B(t)) + \mu(A(t)) - \mu(Q(t)) \\
17. & \quad R(t)S_1 t(t)A(t)_{Q(t)} = \left(S_{21}^t f(t)_{B(t)}^{A(t)} \right)_{Q(t)B(t)} \\
18. & \quad \mu_{Q(t)S_1 t(t)A(t)}^{B(t)} = \mu(B(t)) + \mu(A(t)) - \mu(Q(t)) \\
19. & \quad R(t)S_1 t(t)A(t)_{Q(t)} = \left(S_{21}^t f(t)_{B(t)}^{A(t)} \right)_{Q(t)B(t)} \\
20. & \quad \mu_{Q(t)S_1 t(t)A(t)}^{B(t)} = \mu(B(t)) + \mu(A(t)) - \mu(Q(t)) \\
21. & \quad R(t)S_1 t(t)A(t)_{Q(t)} = \left(S_{21}^t f(t)_{B(t)}^{A(t)} \right)_{Q(t)B(t)} \\
22. & \quad \mu_{Q(t)S_1 t(t)A(t)}^{B(t)} = \mu(B(t)) + \mu(A(t)) - \mu(Q(t)) \\
23. & \quad R(t)S_1 t(t)A(t)_{Q(t)} = \left(S_{21}^t f(t)_{B(t)}^{A(t)} \right)_{Q(t)B(t)} \\
24. & \quad \mu_{Q(t)S_1 t(t)A(t)}^{B(t)} = \mu(B(t)) + \mu(A(t)) - \mu(Q(t)) \\
25. & \quad R(t)S_1 t(t)A(t)_{Q(t)} = \left(S_{21}^t f(t)_{B(t)}^{A(t)} \right)_{Q(t)B(t)} \\
26. & \quad \mu_{Q(t)S_1 t(t)A(t)}^{B(t)} = \mu(B(t)) + \mu(A(t)) - \mu(Q(t)) \\
\end{align*}
\]

The concepts of dynamical Set_1 force: \(F_1(t) \), the containment of force \(F_1(t) \) into force \(F_2(t) \) and the displacement of force \(F_4(t) \) from force \(F_5(t) \) at time \(t \) simultaneously, dynamical Set_2 – energy: \(E_2(t)S_1 t(t)^2 \), the containment of energy \(E_1(t) \) into energy \(E_2(t) \) and the displacement of energy \(E_4(t) \) from energy \(E_5(t) \) at time \(t \) simultaneously. Consider the concepts of dynamical Set_1 – capacity in itself of physical objects \(A(t), B(t) \). Similar to the concepts of publication: the dynamical Set_1 – capacity in itself of the null type is the dynamical holding capacity containing itself as an element and expelling oneself out of oneself at time \(t \) simultaneously: \(S_{21}^t(t)fA(t) = A(t)S_1 t(t)^2 \), dynamical Set_1 – capacity in itself of the fifth type contains itself in part and expelling oneself in part or contains a program that allows it to be generated and it to be degenerated at time \(t \) simultaneously partially, or both: \(S_{21}^t(t)fA(t) = A(t)S_1 t(t)^2 \). By analogy, for \(S_{21}^t(t)fA(t) = A(t)S_1 t(t)^2 \), dynamical Set_1 – capacity in itself of the fifth type contains itself in part and expelling oneself in part or contains a program that allows it to be generated and it to be degenerated at time \(t \) simultaneously partially, or both: \(S_{21}^t(t)fA(t) = A(t)S_1 t(t)^2 \).
Also you can consider these types of dynamical Set₁-capacity in itself for other objects. For example: $S^f_{\alpha_1}(t) f$ operator $A(t)$, $S^f_{\beta_1}(t) f$ action $B(t)$, $S^f_{\gamma_1}(t) f$ made $Q(t)$ $i=0, 1, 2, 3, 4, 5$ and etc.

Remark. The concept of elements of physics dynamical Set₁ is introduced for energy space. The corresponding concept of elements of chemistry dynamical Set₁ is introduced accordingly.

Set₁ – elements for continual sets

Here we consider some continual Set₁-elements and continual self-consistencies in itself as an element.

Definition 22. The containment of A into B and the displacement of D from C simultaneously, where A, B, D, C - sets of continual elements we shall call continual Set₁ – element. Let's denote $\mathbb{S}_t A_t B_t$.

Definition 23. $\mathbb{C}_{\alpha_1} t_{\beta_1} A_{\gamma_1}$ with ordered elements \bar{A} and \bar{D}, where A, B, D, C - sets of continual elements, is called an ordered Set₁ – element.

It is allowed to add continual Set₁ – elements:

$$\begin{align*}
&\mathbb{C}_{\alpha_1} t_{\beta_1} A_{\gamma_1} + \mathbb{C}_{\delta_1} t_{\epsilon_1} B_{\zeta_1} = \mathbb{C}_{\alpha_1 \delta_1} t_{\beta_1 \epsilon_1} A_{\gamma_1 \zeta_1} (*_5),
&\quad \text{where some or any elements may be by ordered elements.}
&\quad \text{It is allowed to multiply continual Set₁ – elements:}
&\quad \mathbb{C}_{\alpha_1} t_{\beta_1} A_{\gamma_1} * \mathbb{C}_{\delta_1} t_{\epsilon_1} B_{\zeta_1} = \mathbb{C}_{\alpha_1 \delta_1} t_{\beta_1 \epsilon_1} A_{\gamma_1 \zeta_1} (*_6),
&\quad \text{where some or any elements may be by ordered elements.}

Continual Set₁ – elements can be elements of a group both by multiplication ($*_5$) and by addition ($*_6$), and also form algebraic ring, field by these operations.

Set₁-capacity in itself for continual sets

Definition 24. The continual Set₁-capacity in itself and from itself A and the displacement of D from B simultaneously, where A - set of continual elements: $\mathbb{G}_t A_t A_t$. Denote $S^f_{\alpha_1} f A$.

Definition 25. The ordered continual Set₁-capacity in itself and from itself \bar{A} of the null type is the holding capacity containing itself as an element and expelling oneself A out of oneself A simultaneously, where A - set of continual elements: $\mathbb{G}_t A_t A_t$. Denote $S^f_{\beta_1} f \bar{A}$.

Definition 26. The continual Set₁-capacity in itself A and from itself B of the first type is the holding capacity containing itself as an element and expelling oneself B out of oneself B simultaneously, where A, B - sets of continual elements: $\mathbb{G}_t A_t B_t$. Denote $S^f_{\alpha_1} f A$.

Definition 27. The continual Set₁-capacity of the second type is the holding capacity containing B into A and expelling oneself B out of oneself B simultaneously, where A, B - sets of continual elements: $\mathbb{G}_t A_t B_t$. Denote $S^f_{\alpha_1} f A$.

Definition 28. The continual Set₁-capacity of the third type is the holding capacity containing itself as an element B and the displacement of B from A simultaneously, where A, B - sets of continual elements: $\mathbb{G}_t A_t B_t$. Denote $S^f_{\alpha_1} f A$.

Definition 29. The continual Set₁-capacity in itself A of the fourth type is the holding capacity that contains the program that allows it to be generated and it to be degenerated simultaneously, where A - set of continual elements. Let's denote $S^f_{\alpha_1} f A$.

Also you can consider these types of dynamical Set₁-capacity in itself for other objects. For example: $S^f_{\alpha_1}(t) f$ operator $A(t)$, $S^f_{\beta_1}(t) f$ action $B(t)$, $S^f_{\gamma_1}(t) f$ made $Q(t)$ $i=0, 1, 2, 3, 4, 5$ and etc.

Remark. The concept of elements of physics dynamical Set₁ is introduced for energy space. The corresponding concept of elements of chemistry dynamical Set₁ is introduced accordingly.
Definition 30. The continual Set₁-capacity in itself of the fifth type A contains itself in part and expelling oneself in part or contains a program that allows it to be generated in part and it to be degenerated in part simultaneously, or both, where A- set of continual elements. Let us denote $S^{et\,f\,A}_{5\,1\,B\,A}$.

Definition 31. The ordered continual Set₁-capacity in itself \vec{A} and from itself B of the first type is the holding capacity containing itself as an element and expelling oneself B out of oneself B simultaneously, where \vec{A}- ordered set of continual elements, B- set of continual elements: $\vec{B}\,S_1\,t_{\vec{A}}^B$. Denote $S^{et\,f\,\vec{A}}_{1\,1\,B}$.

Definition 32. The ordered continual Set₁-capacity in itself A and from itself \vec{B} of the first type is the holding capacity containing itself as an element and expelling oneself \vec{B} out of oneself B simultaneously, where \vec{B} - ordered set of continual elements, A- set of continual elements: $\vec{B}\,S_1\,t_{\vec{A}}^B$. Denote $S^{et\,f\,\vec{A}}_{1\,1\,B}\vec{B}$.

Definition 33. The ordered continual Set₁-capacity in itself \vec{A} and from itself B of the first type is the holding capacity containing itself as an element and expelling oneself B out of oneself B simultaneously, where \vec{A}, \vec{B} - ordered sets of continual elements: $\vec{B}\,S_1\,t_{\vec{A}}^B$. Denote $S^{et\,f\,\vec{A}}_{1\,1\,B}$.

Definition 34. The continual Set₁-capacity of the second type is the holding capacity containing B into \vec{A} and expelling oneself B out of oneself B simultaneously, where \vec{A}- ordered set of continual elements, B- set of continual elements: $\vec{B}\,S_1\,t_{\vec{A}}^B$. Denote $S^{et\,f\,\vec{A}}_{1\,1\,B}$.

Definition 35. The continual Set₂-capacity of the second type is the holding capacity containing B into \vec{A} and expelling oneself \vec{B} out of oneself B simultaneously, where \vec{B} - ordered set of continual elements, A- set of continual elements: $\vec{B}\,S_2\,t_{\vec{A}}^B$. Denote $S^{et\,f\,\vec{A}}_{2\,1\,B}\vec{B}$.

Definition 36. The continual Set₃-capacity of the second type is the holding capacity containing B into \vec{A} and expelling oneself \vec{B} out of oneself B simultaneously, where \vec{A}, \vec{B} - ordered sets of continual elements: $\vec{B}\,S_3\,t_{\vec{A}}^B$. Denote $S^{et\,f\,\vec{A}}_{3\,1\,B}$.

Definition 37. The continual Set₁-capacity of the third type is the holding capacity containing itself as an element B and the displacement of B from \vec{A} simultaneously, where \vec{A}- ordered set of continual elements, B- set of continual elements: $\vec{A}\,S_1\,t_B^\vec{A}$. Denote $S^{et\,f\,\vec{A}}_{1\,1\,B}$.

Definition 38. The continual Set₂-capacity of the third type is the holding capacity containing itself as an element \vec{B} and the displacement of \vec{B} from A simultaneously, where \vec{B} - ordered set of continual elements, A- set of continual elements: $\vec{A}\,S_2\,t_B^\vec{A}$. Denote $S^{et\,f\,\vec{A}}_{2\,1\,B}\vec{B}$.

Definition 39. The continual Set₃-capacity of the third type is the holding capacity containing itself as an element \vec{B} and the displacement of \vec{B} from \vec{A} simultaneously, where \vec{A}, \vec{B} - ordered sets of continual elements: $\vec{B}\,S_3\,t_B^\vec{A}$. Denote $S^{et\,f\,\vec{A}}_{3\,1\,B}\vec{B}$.

Definition 40. The ordered continual Set₁-capacity in itself \vec{A} of the fourth type is the holding capacity that contains the program that allows it to be generated and it to be degenerated simultaneously, where \vec{A}- set of continual elements. Let’s denote $S^{et\,f\,\vec{A}}_{4\,1\,B}$.
Definition 41. The ordered continual Set₁-capacity in itself of the fifth type \hat{A} contains itself in part and expelling oneself in part or contains a program that allows it to be generated in part and it to be degenerated in part simultaneously, or both simultaneously, where \hat{A}- ordered set of continual elements. Let us denote $S_{51}^{\text{et}} f \hat{A}$.

Also we consider next elements: $S_{51}^{\text{et}} f \hat{1}$, $S_{51}^{\text{et}} f \hat{1}_1$, $S_{51}^{\text{et}} f \hat{1}_2$, $S_{51}^{\text{et}} f \hat{1}_3$, $S_{51}^{\text{et}} f \hat{1}_4$, $S_{51}^{\text{et}} f \hat{1}_5$, and etc.

Connection of Set₁ - elements with self-consistencies in itself as an element. Consider a fifth type of continual self-consistency in itself as an element. For example, $S_{51}^{\text{et}} f A$, where $A = (a_1, a_2, \ldots, a_n)$, i.e. a_i- continual elements, $i=1, 2, \ldots, n$. It’s possible to consider the continual self-consistency in itself as an element $S_{51}^{\text{et}} f A$ with m continual elements from A, at $m<n$, which is formed by the form (1), that is, only m continual elements are located in the structure $S_{51}^{\text{et}} f A$.

Continual self-consistencies in itself as an element of the fifth type can be formed for any other structure, not necessarily Set₁, only through the obligatory reduction in the number of continual elements in the structure. In particular, using the form (2). The structure $S_{51}^{\text{et}} f A$ Structures more complex than $S_{51}^{\text{et}} f A$ can be introduced.

Mathematics itself for continual Set₁-elements
Simultaneous addition of a sets A, B, C, D with continual elements are realized by

Simultaneous addition of a sets A, B, C, D with continual elements are realized by $\bigcup_{D \uplus A_1 B_1}$, where A, B, C, D may be ordered sets of continual elements.

1. $\frac{B}{D} S_{1}^{A} = (\frac{B}{D} S_{1}^{A} B_{1})$, $\mu(\frac{B}{D} S_{1}^{A} B_{1}) = \frac{B}{D} S_{1}^{A} B_{1}(B) = \frac{B}{D} S_{1}^{A} B_{1}(B) + \frac{B}{D} S_{1}^{A} B_{1}(B) - \frac{B}{D} S_{1}^{A} B_{1}(B)$

2. $\frac{B}{D} S_{1}^{A} B_{1} = (\frac{B}{D} S_{1}^{A} B_{1})$, $\mu(\frac{B}{D} S_{1}^{A} B_{1}) = \frac{B}{D} S_{1}^{A} B_{1}(B) = \frac{B}{D} S_{1}^{A} B_{1}(B) + \frac{B}{D} S_{1}^{A} B_{1}(B) - \frac{B}{D} S_{1}^{A} B_{1}(B)$

3. $\frac{B}{D} S_{1}^{A} B_{1} = (\frac{B}{D} S_{1}^{A} B_{1})$, $\mu(\frac{B}{D} S_{1}^{A} B_{1}) = \frac{B}{D} S_{1}^{A} B_{1}(B) = \frac{B}{D} S_{1}^{A} B_{1}(B) + \frac{B}{D} S_{1}^{A} B_{1}(B) - \frac{B}{D} S_{1}^{A} B_{1}(B)$

4. $\frac{B}{D} S_{1}^{A} B_{1} = (\frac{B}{D} S_{1}^{A} B_{1})$, $\mu(\frac{B}{D} S_{1}^{A} B_{1}) = \frac{B}{D} S_{1}^{A} B_{1}(B) = \frac{B}{D} S_{1}^{A} B_{1}(B) + \frac{B}{D} S_{1}^{A} B_{1}(B) - \frac{B}{D} S_{1}^{A} B_{1}(B)$

5. $\frac{B}{A} S_{1}^{A} B_{1} = (\frac{B}{A} S_{1}^{A} B_{1})$, $\mu(\frac{B}{A} S_{1}^{A} B_{1}) = \frac{B}{A} S_{1}^{A} B_{1}(B) = \frac{B}{A} S_{1}^{A} B_{1}(B) + \frac{B}{A} S_{1}^{A} B_{1}(B) - \frac{B}{A} S_{1}^{A} B_{1}(B)$

6. $\frac{B}{A} S_{1}^{A} B_{1} = (\frac{B}{A} S_{1}^{A} B_{1})$, $\mu(\frac{B}{A} S_{1}^{A} B_{1}) = \frac{B}{A} S_{1}^{A} B_{1}(B) = \frac{B}{A} S_{1}^{A} B_{1}(B) + \frac{B}{A} S_{1}^{A} B_{1}(B) - \frac{B}{A} S_{1}^{A} B_{1}(B)$

7. $\frac{B}{A} S_{1}^{A} B_{1} = (\frac{B}{A} S_{1}^{A} B_{1})$, $\mu(\frac{B}{A} S_{1}^{A} B_{1}) = \frac{B}{A} S_{1}^{A} B_{1}(B) = \frac{B}{A} S_{1}^{A} B_{1}(B) + \frac{B}{A} S_{1}^{A} B_{1}(B) - \frac{B}{A} S_{1}^{A} B_{1}(B)$

8. $\frac{B}{A} S_{1}^{A} B_{1} = (\frac{B}{A} S_{1}^{A} B_{1})$, $\mu(\frac{B}{A} S_{1}^{A} B_{1}) = \frac{B}{A} S_{1}^{A} B_{1}(B) = \frac{B}{A} S_{1}^{A} B_{1}(B) + \frac{B}{A} S_{1}^{A} B_{1}(B) - \frac{B}{A} S_{1}^{A} B_{1}(B)$

9. $\frac{B}{A} S_{1}^{A} B_{1} = (\frac{B}{A} S_{1}^{A} B_{1})$, $\mu(\frac{B}{A} S_{1}^{A} B_{1}) = \frac{B}{A} S_{1}^{A} B_{1}(B) = \frac{B}{A} S_{1}^{A} B_{1}(B) + \frac{B}{A} S_{1}^{A} B_{1}(B) - \frac{B}{A} S_{1}^{A} B_{1}(B)$

10. $\frac{B}{A} S_{1}^{A} B_{1} = (\frac{B}{A} S_{1}^{A} B_{1})$, $\mu(\frac{B}{A} S_{1}^{A} B_{1}) = \frac{B}{A} S_{1}^{A} B_{1}(B) = \frac{B}{A} S_{1}^{A} B_{1}(B) + \frac{B}{A} S_{1}^{A} B_{1}(B) - \frac{B}{A} S_{1}^{A} B_{1}(B)$

11. $\frac{B}{A} S_{1}^{A} B_{1} = (\frac{B}{A} S_{1}^{A} B_{1})$, $\mu(\frac{B}{A} S_{1}^{A} B_{1}) = \frac{B}{A} S_{1}^{A} B_{1}(B) = \frac{B}{A} S_{1}^{A} B_{1}(B) + \frac{B}{A} S_{1}^{A} B_{1}(B) - \frac{B}{A} S_{1}^{A} B_{1}(B)$

2023. Авторські права захищені | Creative Commons Attribution-ShareAlike 4.0 International License
12. \(R_s A t B \) = \((R A t A)_{Q s t B} \), \(\mu (R s A t B) = \mu (A) + \mu (B) + \mu (R) - \mu (Q) \)

13. \(R_s A t B \) = \((R A t A)_{Q s t B} \), \(\mu (R s A t B) = \mu (A) + \mu (B) + \mu (R) - \mu (Q) \)

14. \(R_s A t B \) = \((R A t A)_{Q s t B} \), \(\mu (R s A t B) = \mu (A) + \mu (B) + \mu (R) - \mu (Q) \)

Let's introduce operator to transform holding capacity to self-consistency in itself as an element: \(Q S t A \), \(Q S t A \) transforms \(A \) to \(S^* A \), \(Q S t A \) transforms \(A \) to \(S^* A \), where \(A, B \) may be ordered sets of continual elements, \(i = 1, 2, 3, 4 \).

Dynamical continual Set 1 - elements

Also may be considered dynamical continual Set 1 - elements, where may be transfer these definitions, operations using \([3]\) on them by analogy:

Definition 42. The process of the containment of \(A(t) \) into \(B(t) \) and the displacement of \(D(t) \) from \(C(t) \) at time \(t \) simultaneously, where some or any elements may be by ordered elements, we shall call dynamical continual Set 1 - element. Let's denote \(C(t) A t (B(t)) \).

Definition 43. The process \(C(t) A t (B(t)) \) is called an ordered dynamical continual Set 1 - element, if some or any elements from \(A(t), B(t), C(t) \) may be by ordered dynamical continual elements.

It is allowed to add dynamical continual Set 1 - elements:
\[
C(t) A t (B(t)) + C(t) A t (B(t)) = C(t) A t (B(t)) + C(t) A t (B(t)) + C(t) A t (B(t)) + C(t) A t (B(t))
\]
where some or any elements may be by ordered elements.

It is allowed to multiply dynamical continual Set 1 - elements:
\[
C(t) A t (B(t)) \cdot C(t) A t (B(t)) = C(t) A t (B(t)) \cdot C(t) A t (B(t))
\]
where some or any elements may be by ordered elements.

Dynamical continual Set 1 - elements can be elements of a group both by multiplication \((\cdot)\) and by addition \((+1)\), and also form algebraic ring, field by these operations.

Dynamical continual containment of oneself

Definition 44. The dynamical continual Set 1 - capacity in itself and from itself \(A(t) \) of the null type is the process of a containment itself as an element and expelling oneself \(A(t) \) out of oneself \(A(t) \) at time \(t \) simultaneously , where \(A(t) \) - set of dynamical continual elements: \(A(t) A t (A(t)) \). Denote \(S^* A t (t, A(t)) \).

Definition 45. The ordered dynamical continual Set 1 - capacity in itself and from itself \(A(t) \) of the null type is the holding capacity containing itself as an element and expelling oneself \(A(t) \) out of oneself \(A(t) \) at time \(t \) simultaneously , where \(A(t) \) ordered set of dynamical continual elements: \(A(t) A t (A(t)) \). Denote \(S^* A t (t, A(t)) \).

Definition 46. The dynamical continual Set 1 - capacity in itself \(A(t) \) and from itself \(B(t) \) of the first type is the process of a containment itself as an element \(A(t) \) and expelling oneself \(B(t) \) out of oneself \(B(t) \) at time \(t \) simultaneously , where \(A(t), B(t) \) sets of dynamical continual elements: \(B(t) A t (A(t)) \). Denote \(S^* A t (t, A(t)) \).

Definition 47. The dynamical continual Set 1 - capacity of the second type is the process of putting \(B(t) \) into \(A(t) \) and expelling oneself \(B(t) \) out of oneself \(B(t) \) at time \(t \) simultaneously , where \(A(t), B(t) \) sets of dynamical continual elements: \(B(t) A t (A(t)) \). Denote \(S^* A t (t, A(t)) \).
Definition 48. The dynamical continual set\(^1\)-capacity of the third type is the process of a containment itself as an element \(B(t)\) and the displacement of \(B(t)\) from \(A(t)\) at time \(t\) simultaneously, where \(A,B\)-sets of dynamical continual elements:
\[
\frac{A(t)}{B(t)}\frac{S(t)}{B(t)}B(t)\frac{A(t)}{B(t)}. \]

Definition 49. The dynamical continual set\(^1\)-capacity in itself \(A(t)\) of the fourth type is the process of a containment of the program that allows it to be generated and it to be degenerated at time \(t\) simultaneously, where \(A(t)\)-set of dynamical continual elements. Let's denote \(\frac{S(t)}{A(t)}fA(t)\).

Definition 50. The dynamical continual set\(^1\)-capacity in itself of the fifth type \(A(t)\) is the process of a containment of itself in part and expelling oneself in part or contains a program that allows it to be generated and it to be degenerated at time \(t\) through the structure Set\(i\), or both simultaneously, where \(A(t)\)-set of dynamical continual elements. Let us denote \(\frac{S(t)}{A(t)}fA(t)\).

Definition 51. The ordered dynamical continual set\(^1\)-capacity in itself \(\frac{A(t)}{B(t)}\) and from itself \(B(t)\) of the first type is the process of a containment itself as an element and expelling oneself \(B(t)\) out of oneself \(B(t)\) at time \(t\) simultaneously, where \(\frac{A(t)}{B(t)}\)-ordered set of dynamical continual elements, \(B(t)\)-set of dynamical continual elements:
\[
\frac{B(t)}{B(t)}\frac{S(t)}{B(t)}B(t)\frac{A(t)}{B(t)}B(t). \]

Denote \(\frac{S(t)}{A(t)}fA(t)\).

Definition 52. The ordered dynamical continual set\(^1\)-capacity in itself \(\frac{A(t)}{B(t)}\) and from itself \(B(t)\) of the first type is the process of a containment itself as an element and expelling oneself \(B(t)\) out of oneself \(B(t)\) at time \(t\) simultaneously, where \(\frac{A(t)}{B(t)}\)-ordered set of dynamical continual elements, \(B\)-set of dynamical continual elements:
\[
\frac{B(t)}{B(t)}\frac{S(t)}{B(t)}B(t)\frac{A(t)}{B(t)}B(t). \]

Denote \(\frac{S(t)}{A(t)}fA(t)\).

Definition 53. The ordered dynamical continual set\(^2\)-capacity in itself \(\frac{A(t)}{B(t)}\) and from itself \(B(t)\) of the first type is the process of a containment itself as an element and expelling oneself \(\frac{A(t)}{B(t)}\) out of oneself \(\frac{A(t)}{B(t)}\) at time \(t\) simultaneously, where \(\frac{A(t)}{B(t)}\), \(\frac{B(t)}{B(t)}\)-ordered sets of dynamical continual elements:
\[
\frac{B(t)}{B(t)}\frac{S(t)}{B(t)}B(t)\frac{A(t)}{B(t)}B(t). \]

Denote \(\frac{S(t)}{A(t)}fA(t)\).

Definition 54. The dynamical continual set\(^1\)-capacity of the second type is the process of a containment \(B(t)\) into \(\frac{A(t)}{B(t)}\) and expelling oneself \(B(t)\) out of oneself \(B(t)\) at time \(t\) simultaneously, where \(\frac{A(t)}{B(t)}\)-ordered set of dynamical continual elements, \(B\)-set of dynamical continual elements:
\[
\frac{B(t)}{B(t)}\frac{S(t)}{B(t)}B(t)\frac{A(t)}{B(t)}B(t). \]

Denote \(\frac{S(t)}{A(t)}fA(t)\).

Definition 55. The dynamical continual set\(^2\)-capacity of the second type is the process of a containment \(\frac{A(t)}{B(t)}\) into \(A(t)\) and expelling oneself \(\frac{A(t)}{B(t)}\) out of oneself \(\frac{A(t)}{B(t)}\) at time \(t\) simultaneously, where \(\frac{A(t)}{B(t)}\)-ordered set of dynamical continual elements, \(A\)-set of dynamical continual elements:
\[
\frac{B(t)}{B(t)}\frac{S(t)}{B(t)}B(t)\frac{A(t)}{B(t)}B(t). \]

Denote \(\frac{S(t)}{A(t)}fA(t)\).

Definition 56. The dynamical continual set\(^3\)-capacity of the second type is the process of a containment \(\frac{A(t)}{B(t)}\) into \(A(t)\) and expelling oneself \(\frac{A(t)}{B(t)}\) out of oneself \(\frac{A(t)}{B(t)}\) at time \(t\) simultaneously, where \(\frac{A(t)}{B(t)}\), \(\frac{B(t)}{B(t)}\)-ordered sets of dynamical continual elements:
\[
\frac{B(t)}{B(t)}\frac{S(t)}{B(t)}B(t)\frac{A(t)}{B(t)}B(t). \]

Denote \(\frac{S(t)}{A(t)}fA(t)\).
Definition 57. The dynamical continual S_{31}^1-capacity of the third type is the process of a containment itself as an element $B(t)$ and the displacement of $B(t)$ from $A(t)$ at time t simultaneously, where $A(t)$ ordered set of dynamical continual elements, $B(t)$ - set of dynamical continual elements: $\frac{A(t)}{B(t)} S_{31}^1 t(t) B(t)$. Denote $S_{31}^1(t) f A(t) B(t)$.

Definition 58. The dynamical continual S_{31}^2-capacity of the third type is the process of a containment itself as an element $\bar{B}(t)$ and the displacement of $\bar{B}(t)$ from $A(t)$ at time t simultaneously, where $A(t)$, $\bar{B}(t)$ - ordered sets of dynamical continual elements: $\frac{A(t)}{\bar{B}(t)} S_{31}^1 t(t) \bar{B}(t)$. Denote $S_{31}^{11}(t) f A(t) \bar{B}(t)$.

Definition 59. The dynamical continual S_{31}^3-capacity of the third type is the process of a containment itself as an element and the displacement of $\bar{B}(t)$ from $A(t)$ at time t simultaneously, where $A(t)$, $\bar{B}(t)$ - ordered sets of dynamical continual elements: $\frac{A(t)}{\bar{B}(t)} S_{31}^1 t(t) \bar{B}(t)$. Denote $S_{31}^{11}(t) f A(t) \bar{B}(t)$.

Definition 60. The ordered dynamical continual S_{31}^4-capacity in itself $\bar{A}(t)$ of the fourth type is the process that contains the program that allows it to be generated and it to be degenerated at time t simultaneously, where $\bar{A}(t)$ - set of dynamical continual elements. Let's denote $S_{31}^{11}(t) f \bar{A}(t)$.

Definition 61. The ordered dynamical continual S_{31}^5-capacity in itself of the fifth type $\bar{A}(t)$ is the process of a containment of itself in part and expelling oneself in part or contains a program that allows it to be generated in part and it to be degenerated in part at time t, or both simultaneously, where $\bar{A}(t)$ - ordered set of dynamical continual elements. Let us denote $S_{31}^{11}(t) f \bar{A}(t)$.

Also we consider some elements:

\begin{align*}
S_{31}^{11}(t) f \bar{A}(t) & S_{31}^{11}(t) f \bar{A}(t) \cup S_{31}^{11}(t) f \bar{A}(t) \cup S_{31}^{11}(t) f \bar{A}(t) \\
S_{51}^{11}(t) f \bar{A}(t) & S_{31}^{11}(t) f \bar{A}(t) \cup S_{31}^{11}(t) f \bar{A}(t) \cup S_{31}^{11}(t) f \bar{A}(t)
\end{align*}

Mathematics itself for dynamical continual S_{31}^t-elements

Simultaneous addition of a dynamical continual elements $A(t)$, $B(t)$, $C(t)$, $D(t)$ with continual elements are realized by $S_{51}^{11}(t) f A(t) \cup C(t) \cup D(t)$. The structure of elements S_{31}^t of a dynamical continual S_{31}^t-elements may be ordered sets of continual elements.

Connection of dynamical continual S_{31}^t - elements with dynamical containment of oneself

Consider a fifth type of dynamical partial containment of oneself. For example, $\bar{A}(t) = A(t)$, where $\{A^n(t)\} = (a_1(t), a_2(t), \ldots, a_n(t))$, i.e. n - continual elements, it is possible to consider the dynamical continual containment of oneself $S_{31}^{11}(t) f \bar{A}(t)$ with m continual elements from $\{A^n(t)\}$, at $m < n$, which is process to be formed by the form (1) [1], that is, only m continual elements from $\{A^n(t)\}$ are located in the structure $S_{31}^{11}(t) f \bar{A}(t)$.

Dynamical continual containments of oneself of the fifth type can be formed for any other structure, not necessarily S_{31}^t, only through the obligatory reduction in the number of continual elements in the structure. In particular, using the form (2) [1]. Structures more complex than $S_{31}^{11}(t) f \bar{A}(t)$ can be introduced.

Dynamical continual S_{31}^t - elements with target weights

Also may be considered dynamical continual S_{31}^t-elements with target weights, which may be transferred these definitions, operations using [2] on them by analogy:
Definition 62. The process of the containment of A(t) with target weights \{g_1(t)\} into B(t) and the displacement of D(t) with target weights \{g_2(t)\} from C(t) at time t simultaneously, where some or any elements may be by dynamical continual elements, we shall call dynamical continual Set; – element with target weights. Let's denote \(\frac{c(t)}{d(t)} S(t) \frac{A(t)}{B(t)}\).

Definition 63. The process \(\frac{c(t)}{d(t)} S(t) \frac{A(t)}{B(t)}\) is called an ordered dynamical continual Set; – element with target weights \{g_1(t)\} or \{g_2(t)\} at time t, or both simultaneously, where some or any elements may be by dynamical continual elements with target weights or dynamical continual elements with target weights, or both.

It is allowed to add dynamical continual Set; – elements with target weights \{g_1(t)\}, \{g_2(t)\):

\[
\frac{c(t)}{d(t)} S(t) \frac{A(t)}{B(t)} = \frac{c(t)}{d(t)} S(t) \frac{A(t)}{B(t)} + \frac{c(t)}{d(t)} S(t) \frac{A(t)}{B(t)}
\]

where some or any elements may be by ordered dynamical continual elements with target weights or dynamical continual elements with target weights, or both.

It is allowed to multiply dynamical continual Set; – elements with target weights:

\[
\frac{c(t)}{d(t)} S(t) \frac{A(t)}{B(t)} = \frac{c(t)}{d(t)} S(t) \frac{A(t)}{B(t)} \frac{c(t)}{d(t)} S(t) \frac{A(t)}{B(t)}
\]

where some or any elements may be by ordered dynamical continual elements with target weights or dynamical continual elements with target weights, or both.

Dynamical continual Set; – elements with target weights can be elements of a group both by multiplication (*) and by addition (*), and also form algebraic ring, field by these operations.

Dynamical continual containment of oneself with target weights

Definition 64. The dynamical continual Set;–capacity in itself and from itself A(t) with target weights \{g(t)\} of the null type is the process of a containment itself as an element with target weights \{g(t)\} and expelling oneself A(t) out of oneself A(t) with target weights \{g(t)\} at time t simultaneously, where A(t) - set of some dynamical continual elements or some ordered dynamical continual elements, or both. Denote \(S_{A(t)}^{ef}(t) f A(t) \{g(t)\}\).

Definition 65. The dynamical continual Set;–capacity in itself A(t) with target weights \{g(t)\} of the fourth type is the process that contains the program that allows it to be generated with target weights \{g(t)\} and it to be degenerated with target weights \{g(t)\} at time t simultaneously, where A(t) - set of some dynamical continual elements or some ordered dynamical continual elements, or both. Denote \(S_{A(t)}^{ef}(t) f A(t) \{g(t)\}\).

Definition 66. The ordered dynamical continual Set;–capacity in itself of the fifth type A(t) with target weights \{g(t)\} is the process of a containment of itself in part with target weights \{g(t)\} and expelling oneself in part with target weights \{g(t)\} or contains a program that allows it to be generated in part with target weights \{g(t)\} and it to be degenerated in part with target weights \{g(t)\} at time t simultaneously, or both simultaneously, where A(t) - set of some dynamical continual elements or some ordered dynamical continual elements, or both. Denote \(S_{A(t)}^{ef}(t) f A(t) \{g(t)\}\).
Definition 67. The dynamical continual Set\textsubscript{1}-capacity in itself A(t) with target weights \{g\textsubscript{1}(t)\} and from itself B(t) with target weights \{g\textsubscript{2}(t)\} of the first type is the process of a containment itself as an element A(t) and expelling oneself B(t) with target weights \{g\textsubscript{2}(t)\} out of oneself B(t) at time t simultaneously, where some or any elements from A(t), B(t) may be by ordered dynamical continual elements with target weights or dynamical continual elements with target weights, or both:
\[B(t)_{L_2(t)} S_1(t)_{A(t)} = B(t)_{L_2(t)} S_1(t)_{A(t)} \cdot \]
Denote \[S_{11}^B(t) f_{A(t)} \]
Definition 68. The dynamical continual Set\textsubscript{1}-capacity with target weights of the second type is the process of putting B(t) with target weights \{g\textsubscript{1}(t)\} into A(t) and expelling oneself B(t) with target weights \{g\textsubscript{2}(t)\} out of oneself B(t) at time t simultaneously, where some or any elements from A(t), B(t) may be by ordered dynamical continual elements with target weights or dynamical continual elements with target weights, or both:
\[B(t)_{L_2(t)} S_1(t)_{B(t)} = B(t)_{L_2(t)} S_1(t)_{B(t)} \cdot \]
Denote \[S_{21}^B(t) f_{A(t)} \]
\[S_{21}^B(t) f_{B(t)} \]
Also we consider some elements:
\[S_{11}^B(t) f_{A(t)} \]
\[S_{11}^B(t) f_{B(t)} \]
Mathematics itself for dynamical continual Set\textsubscript{1}-elements with target weights
Simultaneous addition of a dynamical continual elements A(t), B(t), C(t), D(t) with continual elements with target weights are realized by
\[D(t)_{L_2(t)} S_1(t)_{B(t)} \]
5. $\mu_{(A(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{ss} (B(t) S^t (t) A(t) B(t))$

6. $\mu_{(A(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

7. $\mu_{(A(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

8. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

9. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

10. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

11. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

12. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

13. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

14. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

15. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

16. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

17. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

18. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

19. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

20. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

21. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

22. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$

23. $\mu_{(Q(t)B(t))t} S^t (t) A(t) B(t)) = \mu_{SS} (B(t) S^t (t) A(t) B(t))$
24. \[R(t)S_{1}t(t)^{A(t)B(t)} = \begin{pmatrix} A(t)g_{1}(t) \\ R(t)g_{2}(t)S_{1}t(t)^{A(t)B(t)} \\ R(t)g(t)S_{1}t(t)^{A(t)B(t)} \\ R(t)g_{2}(t)S_{1}t(t)^{A(t)B(t)} \end{pmatrix}, \]

25. \[\mu_{Q(t)B(t)}R(t)S_{1}t(t)^{A(t)B(t)} = \begin{pmatrix} \mu(A(t)g_{1}(t)) \\ \mu(A(t)g_{2}(t)) \end{pmatrix} \]

Consider a fifth type of dynamical containment of oneself with target weights \(g(t) \). For example, based on \(S_{51}^{C}(t)^{A(t)B(t)} \), where \(A = (a_{1}(t), a_{2}(t), \ldots, a_{n}(t)) \), i.e. \(n \) - continual elements with target weights \(g(t) \) in one point \(x \), it is possible to consider the dynamical containment of oneself with target weights \(S_{51}^{C}(t)^{A(t)B(t)} \) with \(m \) continual elements with target weights \(g(t) \) from \(A \), at \(m<n \), which is process to be formed by the form (1), that is, only \(m \) continual elements with target weights \(g(t) \) from \(A \) are located in the structure \(S_{51}^{C}(t)^{A(t)B(t)} \). Dynamical containments of oneself with target weights of the fifth type can be formed for any other structure, not necessarily Set., only through the obligatory reduction in the number of continual elements with target weights in the structure. In particular, using the form (2). Structures more complex than \(S_{51}^{C}(t)^{A(t)B(t)} \) can be introduced.

References:
